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Abstract

The plane problem for bonded elastic half-planes containing a crack at an arbitrary angle to the graded interfacial
zone is considered in this paper. The interfacial zone is treated as a nonhomogeneous interlayer with its elastic modulus
varying continuously in thickness direction. Based on the use of the Fourier integral transform method and with the aid
of the stiffness matrix approach, the crack problem is formulated as a system of singular integral equations for arbitrary
crack surface tractions. The main results presented are the variations of mixed-mode stress intensity factors as a
function of the crack orientation angle for various combinations of material and geometric parameters of bonded media
in conjunction with the nonhomogeneity in the graded interlayer. The probable cleavage angles for the crack growth
direction are also evaluated under the remote biaxial loading, together with the corresponding values of effective tensile
mode stress intensity factors. © 2001 Elsevier Science Ltd. All rights reserved.
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1. Introduction

The analysis of functionally graded materials has become a subject of increasing importance motivated
by a number of potential benefits achievable from the use of such novel materials in a wide range of modern
technological practices. The major advantages of the graded material, especially in elevated temperature
environments, stem from the tailoring capability to produce a gradual variation of its thermomechanical
properties in the spatial domain (Koizumi, 1993). In particular, the use of the graded material as interlayers
in the bonded media is one of the highly effective and promising applications in eliminating various
shortcomings resulting from stepwise property mismatch inherent in piecewise homogeneous composite
media (Lee and Erdogan, 1994; Suresh and Mortensen, 1997).

*Tel.: +82-2-910-4682; fax: +82-2-910-4839.
E-mail address: hjchoi@kmu.kookmin.ac.kr (H.J. Choi).

0020-7683/01/$ - see front matter © 2001 Elsevier Science Ltd. All rights reserved.
PII: S0020-7683(01)00090-7



6560 H.J. Choi | International Journal of Solids and Structures 38 (2001) 65596588

From the fracture mechanics viewpoint, the presence of a graded interlayer would play an important role
in determining the crack driving forces and fracture resistance parameters. In an attempt to address the
issues pertaining to the fracture analysis of bonded media with such transitional interfacial properties, a
series of solutions to certain crack problems was obtained by Erdogan and his associates. Among them are
a crack in the nonhomogeneous interlayer bounded by dissimilar homogeneous media (Delale and Erdo-
gan, 1988); a crack perpendicular to and approaching the interface with a nonhomogeneous medium
(Erdogan et al., 1991); and a crack at the interface between homogeneous and nonhomogeneous materials
(Chen, 1990; Ozturk and Erdogan, 1996). Similar problems of delamination or an interface crack between
the functionally graded coating and the substrate were considered by Jin and Batra (1996), Bao and Cai
(1997), and Shbeeb and Binienda (1999). Besides, the analysis of a crack normal to the graded interfacial
zone in the layered half-plane and bonded strips was performed by Choi (1996a,b). More recently, the
interaction of collinear cracks in a layered medium with a graded interlayer subjected to mechanical and
thermal shock loading was reported by Choi et al. (1998a,b), and the dynamic responses of a crack in
functionally graded materials are due to Babaei and Lukasiewicz (1998) and Parameswaran and Shukla
(1999). Gu and Asaro (1997), based on the local homogeneity of such materials in the near-tip field, exa-
mined the crack deflection for several cracked geometries.

A significant implication from all these studies is that the near-tip singular stress field remains to be of
the square-root type along with the same angular distributions around the crack tip as those for homo-
geneous materials, independent of the crack orientation when the spatial distribution of the elastic proper-
ties is continuous and piecewise differentiable near and at the crack tip. As a result, the influence of
material gradients in the vicinity of a crack tip manifests itself through the stress intensity factors. For more
details, interested readers are referred to the work by Atkinson (1977), Eischen (1987), Schovanec and
Walton (1988), Erdogan et al. (1991), Martin (1992), and Jin and Noda (1994). It should be reminded that
this rectifies such pathological drawback as oscillatory or nonsquare-root stress singularities that occur in
analyzing the bonded materials which are assumed to be piecewise homogeneous with an ideal interface of
zero thickness (Rice, 1988; Romeo and Ballarini, 1995).

As aforementioned, the preceding analyses of crack problems for bonded media with the graded
properties are ordinarily restricted to two particular crack orientations, for which the geometric, material,
and loading symmetries exist about the crack plane or about the normal through the crack center. It ap-
pears that the near-tip field quantities for an arbitrarily oriented crack entailing the presence of the graded
interlayer are not yet available; although a number of previous analytical solutions for the inclined crack in
the single phase media are well documented in the literature, for example, by Krenk (1975), Erdogan and
Arin (1975), Delale et al. (1979), Kim and Lee (1996), Rayaprolu and Rooke (1998), and Beghini et al.
(1999), while those in the piecewise homogeneous bonded media have been obtained using different tech-
niques, e.g., by Bogy (1971), Erdogan and Aksogan (1974), Ashbaugh (1975), Isida and Noguchi (1993),
Wang and Meguid (1996), and the references therein.

The objective of this paper is, therefore, to provide a plane elasticity solution for an inclined crack in the
bonded dissimilar half-planes with a graded nonhomogeneous interfacial zone. The Fourier integral
transform method is employed and the formulation of the crack problem with the aid of the stiffness
matrix approach results in a system of singular integral equations for arbitrary crack surface tractions. The
mixed-mode stress intensity factors are defined in terms of the solutions to the integral equations. In the
numerical results, parametric studies are conducted so that the stress intensity factors are evaluated as a
function of the crack orientation angle for various material and geometric combinations of the bonded
media. Both the uniform crack surface tractions and the remote biaxial loading are considered as the
external boundary conditions. Further presented are the probable cleavage angles for the crack growth
direction under the biaxial loading condition and the corresponding values of effective tensile-mode stress
intensity factors.



H.J. Choi | International Journal of Solids and Structures 38 (2001) 6559-6588 6561

2. Problem statement and formulation

Consider the elastic half-planes bonded through an interfacial zone with the graded properties. As shown
in Fig. 1, a half-plane in the right-hand side contains a crack at an arbitrary angle 0 to the graded interfacial
zone. The two rectangular Cartesian coordinate systems, (x,y) and (x;,y,), are employed which are related
to each other as

X =mx+ny, y = —nx-—+my (1a)

m=cosfl, n=sinf (1b)

where the angle 0 is measured counterclockwise from the positive x-axis. In the (x;, y) coordinate, the crack
is located along the line at a < x; < b and y; = 0, with its length and distance from the interfacial zone
being 2¢ = b — a and d, respectively. Thus, for a fixed distance d, the crack can be oriented from a per-
pendicular position (0 = 0°) to a parallel or an interfacial one (0 = 90°) in the bonded media. The cracked
half-plane, the interfacial zone, and the uncracked half-plane are distinguished in order from the right-hand
side and are defined in the (x,y) coordinate system.

By denoting the elastic moduli of the dissimilar homogeneous half-planes as E;, j = 1,3, and modeling
the graded interfacial zone as a nonhomogeneous interlayer of thickness /%, the elastic modulus of the in-
terlayer E,(x) is approximated based largely on analytical expediency as (Ozturk and Erdogan, 1996)

E>(x) = E,e 2)

where the constant E, and the nonhomogeneity parameter f§ are specified satisfying the continuous tran-
sition of the elastic moduli from one half-plane to the other as

E, =E|, ﬁ:—%ln (5—:) (3)

and the Poisson’s ratio is taken to be constant as v; = v, j = 1,2, 3, owing to the fact that its variation
within a practical range has the rather insignificant influence on the values of the near-tip driving forces for
fracture (Ozturk and Erdogan, 1996; Choi, 1997).

With u;(x,y), j = x, y, referring to the displacement components in the x- and y-directions, respectively, a
system of governing equations corresponding to Eq. (2) is expressed as

Eq

E2(x) 7 xa
P

2c

Y
]

le— h —»>te—d

J

Fig. 1. Schematic representation of bonded half-planes with a crack at an arbitrary angle to the graded interfacial zone.
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2 0 (0u, Ou, p Ou Ou
2 v x ) o )2 =
Vux+—K_lax(ax+ay)+K_l[(1+K)6x+(3 K)ay 0 (4a)
2 0 (Ou, Ou Ou au
2 v x| Yy x v\
Vit o () (et 5 ) =0 (4b)

where k = (3 — 4v) for plane strain and x = (3 — v)/(1 4 v) for plane stress, and f§ # 0 for the graded in-
terlayer and § = 0 for the half-planes.
Using the (x,y) coordinate system, the interface and regularity conditions are written as

u1(0,y) = u2:(0, ), 1y (0,9) = uz(0,5); |y < o0 (5a)
01::(0,¥) = 026(0,9), 015(0,y) = 024(0,¥); |y < o0 (5b)
tae(—h,y) = us(=h,y), wa(=h,y) = us(=h,y); |y| <oo (5¢)
O2x(—h,y) = 03u(=h,p), O2y(=h,y) = 03 (=h,¥); |y <00 (5d)
up(x,y) = 0, uy(x,y) —0; i=13, |x] =0 (Se)
and the mixed conditions along the cracked plane in the (x;,y;) coordinate are imposed as
Oy (X1, +0) = 01y, (1, =0), G1ypy, (31, +0) = 015y, (X1, —0);  x; >0 (6a)
Tiyy (X1, +0) = p(x1), Ory, (x1,+0) =¢(x1); a<x <b (6b)
Ui (X1, +0) = ury, (21, =0), w1y, (21, +0) = uyy, (x1,-0); 0<x <@, x;>b (6¢)

where the first numeric subscripts denote the constituent materials, and p(x;) and ¢(x;) describe the ar-
bitrary normal and shear tractions on the crack surface, respectively.

For the cracked half-plane in the right-hand side, the displacements and stresses, u;; and ¢y;, i, j = x,,
or i, j = x1,y, can be expressed as the sum of two parts derived in the (x,y) coordinate system:

1 2 .
w(x,) = uy) (x,) + ) (v,y); i=x,p (7a)
) = D @) i 7
Ulzj(xay) _olij(xay)+01ij(xvy)v L] =X) ( )
or in the (x;,y) coordinate system:
i, ) = ) (o) + ) ()@= xm (8a)
) () ) i 8b
o(x1, 1) = Unj(xlm) + Uuy(xl,yl), L] =X,N" (8b)

where the superscript (1) refers to the field components in an infinite plane with a crack and the superscript
(2) is for those in the half-plane without the crack.

In order to find the expressions for the field components in the homogeneous full-plane containing a
crack along a < x; < b and y; = 0, the general solutions for the displacements in the upper (y; > 0) and
lower (y; < 0) regions are first obtained by solving the governing equations in Egs. (4a) and (4b) based on
the Fourier integral transform method and those for the stresses are obtainable from the constitutive re-
lations. After imposing the traction equilibrium as in Eq. (6a) and defining the unknown auxiliary func-
tions as
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o1 m (1)
Bi0) = 5 [ e+ 0) =)~ 0)] x>0 (%)
o1 m (1)
$(v)) = 2 [uf) (01, + 0) =iy G, = )i 3 >0 (9b)
1

the displacements and stresses for the cracked homogeneous full-plane in the (x, ) coordinate can then be
expressed as

() _ 1 b 21/2 2y;
Uy, (x1,01) —m /a ¢, (1) [(1 — &) In)yf + (t —x1)7] —m] dr
1 t—x 2 (t=x1)n
~ 5 ¢>z( ) [arctan PRI (t_xl)2‘| dt (10a)
M o t—x 2 (t—x)n
uyy, (X1, 1) = o /a ¢1(1) [arctan y1 +1 KRt (—x) dr
1 b 271/2 2y
_m/a b, (2) [(1 — ) Iy} + (t —x1)7] +m] dt (10b)
(1) - 2/11 b t— X B 2(I7X1)y12
o =7 [ 90 e <f—x1)2121 )
2 2 pbi--x)]
(1 +x) / #20 RA=—x) P+ —x)7 1 & (10

2u b
G<1,1")1,V1(x17y1) :TC(I —‘y-lK) / (b](t)

t—x 2(t — x1)y?
2 2+ 2 122 dr
i+ (t—x1) Di+ (t —x1)7]

2 2

'ul / $,(1) ylb}l t—xl)z)]z] dr (10d)
2

0(12;1( 17J/1 2#1 / b, (1 J/1b’1 t_x )2)}2] de

+7t(12l—l|—11<)/a $,(1) L Z(t_XI)ylz}zldt (10e)

R+-xn) D+ (-x)
where y; = E1/2(1 +v) is the shear modulus and the functions ¢, j = 1,2, are subjected to the following
continuity and single-valuedness conditions:

$;(x1)=0; 0<x;<a, x;>b; j=1,2 (11a)

b
/ ¢,(c)dn =0, j=1,2 (11b)
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For the second part of the solutions, the displacement and stress components that satisfy the condition in
Eq. (5¢) are obtained in the (x,y) coordinate in terms of the Fourier integrals as

ul? (x,y) = _% / : |S| [Gl + < ﬁ)c;z} e i gy (12a)
uiy (x,y) = % /_ : (Gy 4 xG,)e P dg (12b)
o\ (x,y) = 12% /:: [ZS(Gl +xGy) + ﬁ (1+ K)Gg] e kv g (12¢)
a2 (x,y) = — ‘2% 7: {2S(G1 +xG) — ;—‘ 3 - K)Gz} el g (12d)
ol () = — 51 " RISI(G: +2G2) — (1= 1)Gale - ds (12¢)

—00

where s is the transform variable, G;(s), j = 1,2, are arbitrary unknowns to be evaluated, and i = (1),
The general solutions of displacement and stress components for the nonhomogeneous interlayer with
B # 0 are expressed as

Uz (x, ) / ZA Fre v ds (13a)
| sy
s 63) =5 | S Fer ds (13b)
o0 45
o) =~ 52 [ S 4503 ] Fe s (13¢)
211: (k=1) J o =
raylr0) = o2 [ Z (3= )27y + (1 + 1)) Fr e ds (134)
Oy (X, 1) / ) Fe v ds (13e)

where u,(x) = E,e®/2(1 4 v), Fi(s), j = 1,...,4, are arbitrary unknowns, r;(s), j = 1,...,4, are the roots of
the characteristic equation:

(r2+ﬁr—s2)2+ <:;—T——:>ﬁ2S2:O (14)

from which the roots are determined as

1 5 3—k\"? .
=g BB 4 - (- )’4ﬁs1( +K> ; Re(r;) >0, j=1,2 (15a)
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_ N2
rj:fl B+ B +4s2 4 (—1)4psi 3K ; Re(r;) <0, j=3.,4 (15b)
2 I+«
and 4;(s), j=1,...,4, are given as
kK —1)(r? + pr;) — (k+ 1)s?
G (G R R G GRS (16)
27, + ( — Dls

For the uncracked half-plane in the left-hand side with = 0, the general solutions of displacements and
stresses satisfying the regularity condition in Eq. (5e¢) are also obtained as

uz (x,y) = i /_: ;—| [Hl + <x - E)Hz} elhivdyg (17a)
usy(x,y) = % /:: (Hy + xH,)eFH v ds (17b)
O (X,y) = 12,11_; /;: |:2S(H1 +xH,) — |§—| (1+ K)H2:| elhivdg (17¢)
O3y(x,y) = — IZM—; Z [ZS(HI + xH,) + |§—| (3- K)H2:| elhivdg (17d)
O3 (X, ¥) = g—; Z 2[s|(H, + xH,) 4 (1 — ) H,)eFF " ds (17e)

where u; = E3/2(1 +v) and H;(s), j = 1,2, are arbitrary unknowns.

As noted in the foregoing, the general solutions of the current elasticity equations involve a total of eight
arbitrary unknowns, G;, j = 1,2, F;, j=1,...,4, H;, j = 1,2, and two additional unknown functions ¢,
j = 1,2. The direct application of interface conditions in Egs. (5a)—(5d) would lead to a system of equations
to be solved for these unknowns in terms of ¢., j = 1,2. In what follows, as a systematic way of circum-
venting the difficulties that may arise from such routine and complicated algebraic manipulations, the
stiffness matrix approach is utilized.

3. Stiffness matrix equations for the bonded media

When applying the interface conditions in Egs. (5a)—(5d), the field components in Egs. (7a) and (7b)
defined in the (x,y) coordinate for the cracked half-plane are to be employed in conjunction with the
transformation of the full-plane solutions in Egs. (10a)—(10e) and using Eqs. (1a) and (1b) such that

1 1 1

”(1)3 (x,y) = muﬁﬁl (x1, ) — nuiyi (xi,m) (18a)
1 I I

) (e, ) = nul) (v, ) + mudl)) () (18b)
1 1 1 I

‘7(1)3((3‘,)/) = m2‘7(1x>1x1 (x1,1) — 2mn0§x)1yl (x1, 1) + ”Zggy)lyl (1, 1) (18c)

1 1 1 1
ol (x,y) = mn ol (r1.n) = of), (x100)| + (2 = ) all) | (x1, 1) (18d)
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The displacement and stress vectors are then defined in the transformed domain (x,s) as

dj(xﬂs) = {_iﬁjx ﬁfy}7 Ej(xﬂs) = {_l?jxx ij)’h Jj=1273 (19)
and the displacements ﬁf(s) and the tractions &, (s) evaluated at the left- (—) and right-hand side (+)
surfaces for each of the constituents are, respectively, expressed in matrix form in terms of the corre-
sponding unknowns, G;, j =1,2, F;, j=1,...,4, and H;, j =1,2. Upon eliminating the unknowns from
these two separate matrix equations for each constituent, the relationship between the values of ﬁf (s) and
6, (s), j=1,2,3, can be obtained as

—5; = Kyd; — f, (20a)
(T _ | Ky KP4

5, | k9 kY1) 7 (20b)
% Ky Ky | 4

o) = K\d; (20c)

where K ( ) z j=12, are 2 x 2 submatrices of the 4 x 4 symmetric local stiffness matrix for the graded
mterlayer K » (s) and K i )(s) are the 2 x 2 symmetric local stiffness matrices for the semi-infinite consti-
tuents 1 and 3, and the vector £, (s) = {fo1 fo2} is given as

(- o o) -2{z) -

in which g;(s), j=1,...,4, are the functions obtained by taking the Fourier transform of the full-plane
solutions at x = 0 with respect to y-axis to be written in terms of ¢;, j = 1,2, as

1-— 1 )
&1 ( ) / d)l( )[1ljrnK (Tsk—mt) —E(z_i_%)}eslmtﬂmtdt

in 1 -« m (1 mis| islmt-isnt
- N slmitisnt § 22
/¢2(){1+K<2|s| '"’)H(z*lmﬂe : (222)
b im (1 mis| n l—x .
= — | — = — — |s|mt-+isnt
£(s) / ¢>1(t)[s (2 1+x> 1+K( 0] +mt>]e dr
b in(1 mis| m -« »
— == —|s|mt+isnt
+/a qﬁz(t)L (2 1+K)+1+K( o0 +mt>}e de (22b)

b .
gz(S) = / qﬁ ( )|:1m2|S|l + = | | ( + ms|t)] ef\s|ml+1snl dr

b
+ / ¢, (1) {imn|s|t F ( + m|st)} g llmitisnt qg (22¢)

gals) = / ¢1(2) {l|m—|s(mS|t -1)+ mn|st} g Islmetiont 4

/ 20)| 1 st = 1) = e (224)
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It is noted that the imaginary part of the local stiffness matrix for the nonhomogeneous graded interlayer
is a null matrix as

ImK{(s) =0 (23)

and the following asymptotic behavior holds for the constituent materials

1 . —
lim-KY(s) = { Kincs 1=/, k=1,2,3 (24)
§—00 § ) 07 l?é], k:17273
where K f,’;)c are the 2 x 2 real and symmetric submatrices containing limiting nonzero values.
By defining d,(s) = d; (s) = d,,(s), j = 1,2, as vectors for the interfacial displacements common to the

adjacent constituents and assembling the local stiffness matrix equations in Eqgs. (20a)—(20c) via the in-
terface continuity conditions in Egs. (5a)~(5d), a system of global stiffness matrix equations is constructed
with d;, j = 1,2, as the basic unknown variables:

-4

or in brief, the above system of algebraic equations is expressed as

Ko=f (26)

where K (s) is a 4 x 4 symmetric global stiffness matrix, d(s) = {8, ,} is a global vector for the interfacial
displacements, and f(s) = {f,, 0} is a vector containing the auxiliary functions ¢,, j = 1,2, and zero ele-
ments.

Upon solving the global stiffness matrix equations for the global interfacial displacements J, the ex-
pressions for the required unknowns, G;, j = 1,2, F;, j=1,...,4, and H;, j = 1,2, that satisfy the inter-
facial conditions can readily be obtained from the relations between these unknowns and the local

interfacial displacements, é;, j = 1, 2. The auxiliary functions ¢;, j = 1,2, thus become the only unknowns
to be determined from the crack surface condition in Eq. (6b).

4. Derivation of singular integral equations

In order to apply the remaining crack surface condition defined in the (x|, ;) coordinate, the traction
components in Eq. (8b) for the cracked half-plane are used with the transformation of the second part of its
solutions in Egs. (12¢)—(12e) as

2 2 2 2
o) () = na(x,y) — 2mna) (x,y) + mel) (x,y) (27a)
2 2 2 2
o, () = mn o) (x,) = o2 (x| + (= ) o) (v, ) (270)
X =mx; —ny,, y=nx;+my (27¢)

so that the tractions along the cracked plane, y; = 0 and x; > 0, are expressed as
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! ’ ('b (t) > 1 K —(|s|m+isn)x
i > 2 2
= - G G
—|—2/oo{(n m){sﬁ—(smxl-l-”z) 2]
S 1 2 —(|s[m+isn)x;
+m §+ m- |Gy pe ds (283_)
1 b ¢ (t) 1 > 1 K —(|s|m-+isn)x
z'ulylhm Olxiy (x1, 1) :1 Tr /a l‘i—xdt+§(n2 - mZ) /;OO |:|S|G1 + <S|mx1 _§+§>G2:|€ (sforismxr
00 _1 .
i [ o 2 50N -

where the first terms in the right-hand side contain the Cauchy singular kernel 1/(¢# — x;) and the expres-
sions for the unknowns G;, j = 1,2, are obtained as outlined above in the form as

2
= MIZ|: Ly 185 — e L2/+3g/+2} (29a)
1y & 2
= ?Z[ 2]gj L2]+4gj+2:| (29b)
J=1
in which the functions L;(s), j = 1,...,8, are defined as
Li(s) = [' sl (1+x)F>+(1- K)Fz;] (30a)
Ly(s) = —s[s|(1 + K)Fi1 + 2sFp + |s|(1 — k) — ,ui} (30b)
1
L) = [ =+ Bl o - 2] (30¢)
Sty
Is| x
Ly(s) = —s|s(1l — k)Fiy + 2|s|Fi2 + s(1 + k)Fp — s (30d)
1
Ls(s) = Fio,  Le(s) = —(sFi1 + [s|Fi2) (30e)
Li(s) = P,  Lg(s) = —(sFi2 + |s|F) (30f)

with F(s), i, j = 1,...,4, denoting the elements of the global flexibility matrix as F(s) = K '(s).

After substituting Eqgs. (29a) and (29b) into Egs. (28a) and (28b) followed by some algebraic manipu-
lations and applying the crack surface condition in Eq. (6b), a system of singular integral equations with a
Cauchy kernel is derived as

" (1) n(l +x) .
i dt+/ Zklj X1, 1) Tp(xl), a<x; <b (31a)
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b b 2
td)Z(i) dt+/ Zkzj(xlaf)‘lsj(l)dtn(lzi;;mq(xl); as<x <b (31b)
a - M a  j=1 1

where the kernels k;;(x;,), i, j = 1,2, are, upon separating the even and odd properties in s from the rel-
evant expressions, obtained as

kij(xy,1) = /0 [A,vj(s,xl,t) cossn(t —xy) — Ajji2)(s,x1, 1) sinsn(t — xl)]e‘s’”“”‘) ds; i,j=1,2 (32)

in which the integrands A;(s,x,¢), i =1,2, j=1,...,4, are written as

1-— 1 -
A (s,x1,1) = _H F(l + 1+ 2mis) My (s, x1) + m( k_ 2mt>M,-2(s,x1) + n(TK+ 2mt>M,-3(s,x1)

2K | s s
+ m (1+x-— 2mts)M,-4(s7x1)} -2y [n(l + mts)M;s(s, x1) — m*tsMiq (s, x1)
s

+ mntsMy (s, x) + m(1 — mts)M;g(s,x,)] (33a)

1-— 1-—
An(s,x,1) = % [r:(l + Kk + 2mis)M; (s, x1) — n<SK — th)M,-z(s,xl) +m<SK+ th)M,-g(s,xl)
—g(l +K— 2mts)]\/1,-4(s,x1)} + 21 [m(l + mts)Mis(s,x1) 4+ mntsMig (s, x1) 4+ m*tsM (s, x;)

—n(1 — mis)Mis(s, x1)] (33b)

1 —
Ai(s,x1,t) = 5—; [m<TK - 2mt)M1(s,x1) —g(l + K+ 2mts)Mp (s, x1) —&—?(1 + Kk — 2mts) M (s, x)

1—
—n <TK + 2mt)Mi4(s,x1)] — 2 [mPtsMis (s, x1) + n(1 + mis)Mig(s, x1)

— m(1 — mts)Mg(s,x,) + mntsMs (s, x1)] (33c¢)

Au(s,x1,1) = % [n <IS_K - 2mt)Mil (s,x1) + ? (1 + 1 + 2mits)Mp (s, x1) +§(1 + Kk — 2mts) M (s, x1)
1—
+ m(—K + 2mt)M,-4(s,x1)} — 21 [mntsM,-s(s,xl) —m(1 + mts)Mi(s,x;)
s
—n(1 = mts)Mp(s,x) — m*tsMis(s,x1)]; i=1,2 (33d)

together with the expressions for AM;(s,x;), i=1,2, j=1,...,8, as
1
Mi;(s,x1) = mn |:2SLJ- + ;(K -1+ 2mxls)Lj+1} i j=1,3,57 (34a)

1 —1 L;
Ml_,-(s,xl)=(nz—mz){sLj-w;("z +mx1s)L_,}+;f; j=2,4,68 (34b)

1 -1
sz(S,xl) = (I’lz — m2) |:SL_/' + E (K 2 + mx1s>L_,-+1} y ] = 1, 3, 5,7 (340)
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Myi(s,x1) = —mn |2sL;_y +—(k — 1 +2mxys)L;|;  j=2,4,6,8 (34d)
K

It should be mentioned that the integrands in Eqgs. (33a)—(33d) possess the following asymptotic behavior
for large values of s such that

lim A;;(s,x;, )e ™" = 0; a < (x;,¢) <b, 0<m<1 (35)

implying that the kernels k;;(x1,¢), i, j = 1,2, in Eq. (32) are bounded. To be noted from the above is the
disappearance of the exponential decay when 6 — 90° or (¢ + x;) — 0.0, rendering the convergence of the
related infinite integrals relatively slow than otherwise. The former corresponds to a crack lying along or
parallel to the nominal interface with the graded interlayer, while the latter is for a crack that has one of its
tips terminating at the interface. Besides, for a crack with its location specified as d = 0.0 and 0° < 6 <90°,
it can be shown that the kernels contain the logarithmic singularities which are, however, square integrable
so that they can be treated as part of the regular kernels in the presence of the Cauchy singularities
1/(t — x;). Thus, the near-tip singular stress field would remain to be standard square-root type, provided
the elastic properties are continuous and not necessarily differentiable at and in the immediate vicinity of
the crack tip, independent of the crack orientation as described by Erdogan et al. (1991) and Ozturk and
Erdogan (1996) for the two limiting cases of 6 = 0° and 6 = 90°, respectively. These features are in contrast
to the dependence of the order of crack-tip stress singularity on both the elastic constants of the constitu-
ents and the angle at which the crack intersects the bimaterial interface of zero thickness in piecewise
homogeneous bonded media (Bogy, 1971).

5. Solution of integral equations and stress intensity factors

With the dominant singular kernel yet attributed only to the Cauchy type for d = 0.0 as well as d > 0.0,
the square-root crack-tip behavior is retained for the inclined crack geometry. As a result, the auxiliary
functions ¢, j = 1,2, can be expressed as (Muskhelishvili, 1953)

h;(t)
(t—a)(b—1)

where #;(t), j = 1,2, are unknown functions bounded and nonzero at t = a and ¢ = b, and in the normalized
interval

RECTRICTNN

the solutions to the system of singular integral equations can be determined by expanding them into the
series of the Chebyshev polynomials of the first kind 7, as

() = ; a<t<b, j=1.2 (36)

1 00
¢;(t) = ¢,(n) = ﬁZ%Tn(ﬂ); n| <1, j=12 (38)
- n=0

in which ¢;,, j = 1,2, n = 0, are the coeflicients to be evaluated. It is noted that ¢,y =0, j = 1,2, and the
orthogonality of 7, can be used to satisfy the compatibility condition in Eq. (11b):

[1 (f)j(”)d’?? j=12 (39)
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After substituting from Egs. (36)—(38) into Egs. (31a) and (31b), truncated with the first N terms, and
using the properties of the Chebyshev polynomial (Gradshteyn and Ryzhik, 1980), the singular integral
equations are regularized as

N b—a N
T[Zcin Un—l(f) + 2 Z
n=1 j:

n=1 j

2
cuHi($) = fi(&); &l <1, i=1,2 (40)

1

where U, is the Chebyshev polynomial of the second kind and the functions Hj;(¢) and f£;(¢) are defined

as

TkE T

oy

(1 + k) (1 + k)
N(&) =——F—p(), fi(&)=—FF"
(0 =T5, 000, AO=T5]
To recast the functional equations in Eq. (40) into a linear system of 2N algebraic equations for the
unknown coefficients ¢;,, j = 1,2, 1 <n <N, the collocation technique can be applied (Erdogan, 1978). The
zeros of Ty are employed as a set of collocation points which are concentrated near the ends ¢ = +1 such
that

Hi(Q) = i,j=12 (41a)

q(<) (41b)

(&) =0, & =cos [7:(2;]\]1)} i=12,...,N (42)

The important problem in the numerical analysis is the evaluation of the kernels k;;(x1,¢), i, j = 1,2, in
Eq. (32) involving the infinite integrations. To this end, the rate of decay of the integrands with respect to
the variable s is to be first examined in order to determine the value of s = s, at which the values of the
integrands become negligibly small. The upper limit of integration is thus taken to be finite but sufficiently
large, rather than s = oo. Subsequently, the interval [0, sy, is divided into a number of subintervals of
variable width on the basis of the functional dependence of the integrands upon the variation of the ar-
gument. The subintervals are mapped onto the unit intervals [+1, —1] with the Gauss—Legendre quadrature
being applied on each mapped subinterval. The values of the kernels are then obtained by summing up the
individual contributions from the subintervals. To be also mentioned is that the integrals /;(¢) in Eq. (41a)
are of Gauss—Chebyshev type and can readily be evaluated by using the corresponding quadrature formula
(Davis and Rabinowitz, 1984). In addition, the number of terms and collocation points N in Egs. (40) and
(42) must be large enough for the solution to converge to a desired degree of accuracy.

Once the values of ¢;,, j=1,2, 1 <n<N, are calculated as described in the foregoing, the integral
equations in Eqs. (31a) and (31b) provide the dominant singular tractions, o1,,,, (£,0) and g,y (¢,0), ahead
of the crack tips || > 1 as

. ) "

{ Tiyy (€,0) } _ 2§ { Cln } [é —sgn(S)Ve - 1}
T (,0) = sgn()V/E - 1

where O(-) denotes the nonsingular terms and due to the elastic property continuity through the interlayer,

the stresses are also continuous at the location of interface with the interlayer.

As physical parameters of primary significance in quantifying the local crack-tip behavior in linear
elastic fracture mechanics, the mixed-mode stress intensity factors are defined as

+0(1); g >1 (43)

Con

X|—a O lx1y (.Xl,O)
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(1) ez o

x1—b 01X1y1 (xl,O)

where K| and Kj; are the modes I and 11 stress intensity factors, respectively, which by using Egs. (43) and
(37), can be evaluated in terms of the solutions to the integral equations as

{25 } 1+K\/__—az {cm} (45a)
(O} -2 o { e (4

in which the continuity of stress components at the nominal interface renders the defined stress intensity
factors equally valid even for the limiting case of d = 0.0 as well.

6. Results and discussion

The numerical results are obtained as a function of the crack orientation angle 6 for various combi-
nations of material (fic, E5/E,) and geometric (0,%/2¢c,d/c) parameters of the bonded media, with the
Poisson’s ratio v = 0.3. Both the uniform crack surface tractions and the remote biaxial stresses are con-
sidered as the external loading conditions under the state of plane strain. In generating the numerical re-
sults, it was noted that the convergence rate of the kernels, in general, decreases with the decreasing
interlayer thickness /# and crack distance d and with the increasing crack angle . The adequate range of
integration for evaluating the related infinite integrals was found to be [0, syax] = [0, 80], which was divided
into 61 subintervals of incremental width, with 10 integration points allocated in each mapped subinterval.
Besides, the number of Gauss—Chebyshev integration points and that of expansion terms and collocation
points N in Egs. (40) and (42) were increased until the values of stress intensity factors converge. The largest
number used was N = 30. It was checked out that the outlined numerical scheme is sufficient to obtain
roughly three-digit accuracy beyond the decimal point for the material and geometric configurations
presented in this study. Consequently, neither increasing the number of integration or collocation points
nor extending the range of integration had an appreciable effect on the results.

6.1. Uniform normal and shear tractions on the crack surface

To confirm the validity of the analytical procedure and numerical results to be examined henceforth, the
values of stress intensity factors for the two special crack orientations, § = 0° and 6 = 90°, are first pre-
sented in Figs. 3 and 4 as a function of interlayer thickness, //2¢, for some values of dimensionless non-
homogeneity parameter ffc. For a crack impinging upon the interface with the graded interlayer at an angle
0 =0° and d/c = 0.0, the variations of uncoupled and normalized modes I and II stress intensity factors
due to the uniform normal (p = —a,, ¢ = 0 in Eq. (6b)) and shear (p = 0, ¢ = —1, in Eq. (6b)) tractions on
the crack surface (Fig. 2) are shown in Fig. 3a and b, respectively, where the relative increases in the stiffness
of the nearby half-plane (x < 0) for negative fic tend to reduce the stress intensity factors. For comparison
purposes, the results for #/2¢ = co obtained by Erdogan et al. (1991) and the author for the modes I and 11
crack, respectively, are added by solid circles. When 0 = 90° and d/c = 0.0 for which the problem becomes
that of a mixed-mode interface crack, the results are illustrated in Fig. 4a and b, subjected to modes I and 11
loading, respectively. It is then observed that as fic increases, owing to the overall reduction in the stiffness
of the plane, the major components of stress intensity factors (i.e., K1 under mode I loading and Kj; under
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Fig. 2. Bonded half-planes with a graded interfacial zone and an inclined crack subjected to uniform normal (mode I) and uniform

shear (mode II) tractions on the crack surface.
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Fig. 3. Single-mode stress intensity factors: (a) Ki/a,c'/?> under mode I loading (p = —ad, and ¢ = 0); (b) Ki1/7,c'/> under mode 11
loading (p = 0 and ¢ = —7,) for a perpendicular crack as a function of graded interlayer thickness 4/2¢ for different values of non-
homogeneity parameter fic (0 = 0° and d/c = 0.0).

mode II loading) increase, while the coupling stress intensity factors (i.e., K under mode II loading and Kj;
under mode I loading), which are considerably smaller than the major ones, become negligible as fc tends
to zero. Also plotted by solid circles in this case are those for /2¢ = oo given by Chen (1990). For these two
crack orientations and fixed values of fic, as the thickness ratio #/2¢ increases, the present solutions ap-
proach the preexisting ones rapidly to be in close agreement when %/2¢ > 2.0 substantiating the general
accuracy of the solutions, although the results for the homogeneous medium are being recovered when 4/2¢
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Fig. 4. Mixed-mode stress intensity factors: (a) [Ki, Ku|/c.c'/? under mode I loading (p = —a, and g = 0); (b) [K7, Ki]/7oc'/? under
mode II loading (p = 0 and ¢ = —1,) for an interface crack as a function of graded interlayer thickness //2c¢ for different values of
nonhomogeneity parameter fic (6 = 90° and d/c = 0.0).

tends to zero. It is noted that for 6 = 90°, the coupling stress intensity factors as shown in Fig. 4 are equal in
magnitude and opposite in sign at the other crack tip.

The variations of stress intensity factors for the arbitrarily oriented crack are next provided in Figs. 5-10
as a function of the crack orientation angle 6. With the crack surface being loaded by uniform normal
traction and for d/c = 0.0 and h/2¢ = 0.5, Fig. 5 illustrates the results for different elastic moduli ratios
E;/E,. In this figure, the crack is shown to experience the considerable mixed-mode deformation arising
from the lack of material and geometric symmetry about the crack plane. Such a coupling effect in terms of
the values of mixed-mode stress intensity factors is seen to be more obvious when 6 becomes greater and, at
the same time, E3/E| is less than unity. Specifically, in addition to the fact that the values of K; increase with
decreasing E3/E}, those of both K7 and Kj; are being enlarged with increasing 0 when the crack is in the stiff
constituent (E;/E; < 1.0), indicating the higher likelihood of brittle fracture for the greater values of 0,
given the same crack surface tractions. Otherwise, the opposite behavior may prevail for E5/E; > 1.0 that
also indicates the enhanced fracture resistance for the crack in a compliant constituent by the adjacent
stiffer material for greater 6.

Fig. 6 shows the mixed-mode stress intensity factors induced under the uniform shear crack surface
traction for different elastic moduli ratios £3/E; and for d/c¢ = 0.0 and #/2¢ = 0.5. Similar to the previous
case of a uniformly pressurized crack, there is a substantial increase in the magnitude of major component
of stress intensity factors Ky for F3/E; < 1.0 and a decrease if £3/E; > 1.0 when compared with those for
homogeneous media. As seen in Fig. 6a, the stress intensity factors at the crack tip ¢ may not undergo
monotonic variations with 6, especially when the values of E;/E; are much less than unity, while such a
trend is not observed for the crack tip away from the interlayer as illustrated in Fig. 6b. To be mentioned
now is that with the crack surface being loaded only in shear mode, depending on the values of 0 and E;/E|,
the coupling stress intensity factor K may be negative with the occurrence of partial or full crack closure. If
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Fig. 5. Mixed-mode stress intensity factors: (a) [Ki(a), Ki(a)]/d.c'/?; (b) [Ki(b), Kir(h)]/coc'/? under mode I loading (p = —a, and
g = 0) versus crack orientation angle 0 for different elastic moduli ratios E3/E, (h/2c¢ = 0.5 and d/c = 0.0).

taken separately, even though the implicit assumption of a frictionless open crack model is violated, such
negative solutions can be used under the combined actions of normal and shear loadings that give rise to
the positive values of superimposed Kj at both the crack tips, as will be discussed in the next section.
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q = —1,) versus crack orientation angle 6 for different elastic moduli ratios E5/E; (h/2c = 0.5 and d/c = 0.0).

Figs. 7 and 8 illustrate the effect of crack distance d/c from the nominal interface when the crack
is subjected to uniform normal and shear crack surface tractions, respectively, for the fixed interlayer
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Fig. 7. Mixed-mode stress intensity factors: (a) [Ki(a), Ku(a)]/coc'/?; (b) [Ki(b), Ku(b)]/doc'/? under mode I loading (p = —a, and
q = 0) versus crack orientation angle 0 for different crack locations d/c and elastic moduli ratios E3/E, (h/2¢ = 0.5).

thickness, #/2¢ = 0.5. Under both the crack surface loadings, a generic trend to be seen is that the major
components of stress intensity factors decrease with decreasing d/c¢ for E;/E; = 5.0, implying the more
pronounced constraints by the stiffer constituent as the crack is closer to the interface with the interlayer,
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Fig. 8. Mixed-mode stress intensity factors: (a) [Ki(a),Ku(a)]/toc"/?; (b) [Ki(b),Kir(h)]/Toc'/? under mode II loading (p = 0 and
q = —1,) versus crack orientation angle 6 for different crack locations d/c and elastic moduli ratios E3/E, (h/2¢ =0.5).

while the opposite behavior is encountered for E5/E; = 0.2. When the crack is located farther away from
the interface, however, the stress intensity factors become less sensitive to the variations of crack angle and
material parameters and the solutions would approach those for a crack in an infinite homogeneous plane.
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Fig. 9. Mixed-mode stress intensity factors: (a) [Ki(a), Ki(a)]/d.c'/?; (b) [Ki(b),Kir(h)]/coc'/? under mode I loading (p = —a, and
q = 0) versus crack orientation angle 0 for different graded interlayer thicknesses 4/2¢ and elastic moduli ratios E5/E; (d/c =0.5).

To be noted is that for 0 = 90° and d/c¢ > 0.0, the results for the subinterface crack parallel to the interface
are generated.
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Fig. 10. Mixed-mode stress intensity factors: (a) [Ki(a),Ki(a)]/toc'/?; (b) [Ki(b), Ki(b)]/Toc'/> under mode II loading (p = 0 and
q = —1,) versus crack orientation angle 6 for different graded interlayer thicknesses //2¢ and elastic moduli ratios E3/E, (d/c = 0.5).

With the crack tip a located at some distance from the graded interlayer as d/c = 0.5, the stress intensity
factors for different interlayer thicknesses, //2c, are plotted in Figs. 9 and 10 under the uniform normal and
shear crack surface tractions, respectively. A common feature to be remarked is that an increase in %/2c
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leads to a decrease in the magnitude of major stress intensity factors for F3/E; = 0.2, and the reverse re-
sponse is obtained for F3/E; = 5.0. On the other hand, the magnitude of coupling stress intensity factors
becomes smaller when //2c¢ increases regardless of the material combinations, which is similar to the effect
of increasing the crack distance d/c as in Figs. 7 and 8. Above trend with //2¢, including the limiting case of
h/2¢ = 0.0, indicates that when the crack is in the stiffer constituent, the presence of a graded interlayer
with the greater thickness would be more effective in shielding the crack, offsetting the influence of the
adjacent compliant constituent. If the thickness ratio 4/2c is increased even further, the effect of 0 would
become, as expected, insignificant such that in conjunction with the dilution of the degree of nonhomo-
geneity within the interlayer, the solutions would also tend to those for the homogeneous counterpart.

6.2. Remote biaxial loading

The mixed-mode stress intensity factors under the biaxial loading condition are examined. As shown in
Fig. 11, the external stresses, Tor I = 1,2,3, and o, are applied sufficiently far away from the crack region.
The displacement continuity at the nominal interfaces requires that such stresses at infinity are not inde-
pendent, but must be of necessity related in such a manner as to produce one of the constant strains in the

y-direction at points remote from the crack. The far-field stresses should then have the following relations

as
ox =H2g% 4 (3_K> (1 —ﬂ)ow (462)
2y 1y Ly 1+x 1 xx
g g (3TN Ks ) (46b)
3yy ,U1 1y 1+K #1 xx

where p, = Eoef/2(14+v) — w, = E;/2(1 +v)

Via the superposition principle, the above problem of a traction-free crack can be considered as that of a
crack loaded by the statically self-equilibrating tractions which are needed for investigating the local crack-
tip behavior in terms of the stress intensity factors. As a result, under the prescribed biaxial loading
condition, the equivalent crack surface tractions in Eq. (6b) are obtained for the crack angle 0 as

p(xi) = —(acij cos? 0+ o sin’ 9), g(x) = — (aij . ooc) cosOsinf; a<x <b (47)
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Fig. 11. Bonded half-planes with a graded interfacial zone and an inclined crack subjected to remote biaxial loading.
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In order to quantify the biaxial load effects, it is assumed that oty = Po and o = A,p, where p, is a
constant and /4, is a parameter measuring the degree of load biaxiality. In this case, the corresponding
values of the stress intensity factors can be readily estimated by using those in the preceding section that are
obtained under the uniform crack surface tractions. With the normalized stress intensity factors for each
type of the uniform crack surface tractions expressed as

KI KH KI KII
K. K)) = ——=,——= K. K)) = —=,—— 48
( 11 21) (00\/5700\/5)7 ( 129 22) (‘L’O\/E"L'O\/E> ( )
where the first subscript i = 1,2, in K} denotes the tensile and shearing mode stress intensities, respectively,
and the second subscript j = 1, 2, refers to the uniform normal (p = —0,,q = 0) and shear (p = 0,9 = —1,)

tractions applied on the crack surface, respectively, and those for the remote biaxial loading can be ob-
tained as

{ 21 } = pov/c(cos? 0 + 4, sin” 0) { ﬁé’i } + pov/e(1 — ) cos Osin H{ ][gg } (49)

Fig. 12 shows the variations of mixed-mode stress intensity factors obtained for the homogeneous
material that coincide exactly with the closed form solution given by Sih et al. (1962). For the two material
combinations £3/E; = 0.2 and F3/E, =5.0, the values of the stress intensity factors are plotted in Figs.
13 and 14, respectively, with the crack location and the interlayer thickness specified as d/c = 0.0 and
h/2¢ = 0.5. Under the combined action of normal and shear tractions, the crack closure does not occur
provided 4, > 0 as can be depicted from Figs. 13a and 14a. Of particular interest for this trimaterial system
with a graded interlayer is that as shown in Figs. 13b and 14b, the values of Kj; may change sign depending
on the crack orientation angle 0 and the degree of load biaxiality 4,. The physical consequence of this sign
change may be the crack growth from its tips in the directions other than that of the original crack.

To predict the onset and direction of incipient kinking of the original unextended crack, an assumption
of the local homogeneity and isotropy of the medium is invoked with respect to its fracture resistance,
especially in a small region close to the crack tip that may intersect the nominal interface with the graded
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Fig. 12. Mixed-mode stress intensity factors: (a) Ki/poc'/?; (b) Kir/poc'/? under biaxial loading versus crack orientation angle 0 in the
homogeneous medium (E5/E; = 1.0).
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Fig. 13. Mixed-mode stress intensity factors: (a) Ki/poc'/?; (b) Kii/poc'/? under biaxial loading versus crack orientation angle 6 in the
bonded media with a graded interlayer (£3/E, = 0.2, h/2c = 0.5, and d/c = 0.0).
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Fig. 14. Mixed-mode stress intensity factors: (a) Ki/poc'/?; (b) Ki1/poc'/? under biaxial loading versus crack orientation angle 0 in the
bonded media with a graded interlayer (£3/E; = 5.0, h/2c = 0.5, and d/c = 0.0).

interlayer. The maximum principal stress criterion is thus applied such that the crack would tend to grow
along the radial planes at angles w;, i = a, b, determined by the root of the quadratic equation given as
(Erdogan and Sih, 1963)

tan’ — —~ —Ltan——-=0; i=a,b (50)
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where the particular choice of the root is dictated by the following condition

(chos%—y(“sin%) >0, i=ab (51)
and w;, i = a, b, are measured counterclockwise at the crack tips from the original crack plane. With such
cleavage angles calculated, the effective tensile mode stress intensity factor K. can be defined as a useful
estimate of the tendency for crack growth as (Broek, 1986)

K. = cos® % (KI cos% — 3Ky, sin%) (52)
in which the crack growth is then assumed to initiate in the directions of w;, i = a, b, when K, > Kjc, the
local plane strain fracture toughness of the material, and the kink is formed at the crack tips.
Subsequently, Figs. 15-17 illustrate the effects of crack angle 6 and biaxial parameter 4, on the probable
cleavage directions and the corresponding values of effective tensile mode stress intensity factor K.. To be
observed from Fig. 15a is that for the inclined crack in the homogeneous plane, the cleavage angles are all
negative for 0 < 4, < 1, i.e., in a clockwise direction and the deviation from the main crack plane decreases
as the load becomes more biaxial. When 0 = 90° and 4, > 0, however, the crack is subjected to pure mode
I loading and the crack grows along its original direction. When the crack is in the stiffer constituent as
E;/E; = 0.2, with the crack location and the interlayer thickness being the same as in Figs. 13, 14, and 16a
reveals that in the biaxially loaded state, the crack growth at the tip b may occur in a counterclockwise
direction as w; > 0 depending on the angle 0 and the load biaxiality 4,, making a noteworthy contrast to
the homogeneous counterpart. On the other hand, the cleavage angle w, is all negative. For the crack in a
less stiff material as F3/E; = 5.0, the reverse behavior exists as shown in Fig. 16b such that o, may have
different sign, while w, is all negative. Hence, for relatively large values of 6 and /,, it is probable that the
crack growth would be toward or away from the graded interlayer to be in the direction of decreasing
stiffness of the bonded media. Another notable feature apparent in Fig. 17 is that similar to the results
in Fig. 15b, the magnitude and variations of effective tensile mode stress intensities K. with 0 are quite
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Fig. 15. Variations of: (a) cleavage angles w; (b) effective tensile mode stress intensity factors K, /poc'/? as a function of crack orien-
tation angle 0 in the homogeneous medium under biaxial loading (E;3/E, = 1.0).
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Fig. 16. Variations of cleavage angles o for: (a) E;/E, = 0.2; (b) E5/E; = 5.0 as a function of crack orientation angle 6 in the bonded
media with a graded interlayer under biaxial loading (%#/2c = 0.5 and d/c = 0.0).
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Fig. 17. Variations of effective tensile mode stress intensity factors K, /p,c'/? for: (a) Es /E; = 0.2; (b) E3/E; = 5.0 as a function of crack
orientation angle 6 in the bonded media with a graded interlayer under biaxial loading (4/2¢ = 0.5 and d/c = 0.0).

comparable to the mode I stress intensity factors for the main crack. This may be indicative of a fact that
while the direction of probable crack cleavage is mainly controlled by the magnitude and sign of Kj; the
propensity for the crack growth is dominated by the values of K.

Based on the idea that the thickness as well as the properties of the interfacial zone may affect the di-
rection of crack growth, the cleavage angles are provided in Fig. 18 as a function of interlayer thickness
h/2c under uniaxial loading (4, = 0). For the given crack orientation 6 and d/c = 0.0, it is shown that the
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Fig. 18. Variations of cleavage angles w for: (a) E5/E, = 0.2; (b) E3/E; = 5.0 as a function of graded interlayer thickness //2c¢ for
different values of crack orientation angle 0 in the bonded media under uniaxial loading (d/c = 0.0 and 7, = 0.0).

cleavage angles are approaching those in the homogeneous medium as //2c¢ increases, although the values
of w, are seen to be more sensitive to the variation of interlayer thickness.

7. Closing remarks

The problem of an inclined crack in bonded media with a graded nonhomogeneous interlayer has been
investigated by deriving a corresponding system of singular integral equations, based on the use of basic
plane elasticity equations and the Fourier integral transform technique. Parametric studies were conducted
so that the mixed-mode stress intensity factors were evaluated, demonstrating several unique and salient
features concerning the local behavior of an arbitrarily oriented crack strongly affected by the material and
geometric configurations of the bonded media in conjunction with the elastic property gradation within the
interlayer. In an effort to further quantify the crack-tip behavior, the probable cleavage angles of the
original crack were estimated under the biaxially loaded condition, together with the values of effective
tensile mode stress intensity factors. In applications of the results obtained in this study, it is likely that the
inclined crack nearby or touching the graded interlayer could be arrested by or advances into the adjacent
materials, depending upon the relative magnitude of toughnesses of the constituents. Additional possi-
bilities of practical interest that may arise are that the crack may tend to grow and then reflect back at some
angle or debonding initiates along the lines of nominal interfaces to interact and coalesce with the original
growing crack. It is anticipated that the versatility of the current analytical solution procedure could be
extended to resolve such more involved issues.
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